Треугольник $ABC$ ($AB < AC$) вписан в окружность $\omega.$ Пусть $I$ --- центр вписанной окружности треугольника $ABC,$ точка $M$ окружности $\omega$ выбрана на меньшей дуге $AB$ так, что $\angle AMI = 90^\circ.$ Пусть $D$ --- точка касания вписанной окружности треугольника $ABC$ с отрезком $BC,$ точка $N$ --- середина меньшей дуги $BC$ окружности $\omega.$ Докажите, что точки $M,$ $D$ и $N$ лежат на одной прямой.



@темы: Планиметрия